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f PREDICTION OF MOTIONS OF’AliAIM?LANE RESULTING .FFK)M
I
1

ABRUPT MOVEMENT OF LATM?AL OR i):[R.WTIONALCONTROLS

‘1
1“ Ey Chester H, Wol.owicz

A procedure is presented “for
of an airpJ.ane resultin,s from the

determining the motions
deflection of the

Iatere.1cr directional ;ontrols for the case of non,-
li,nearderivatives l%e step-by-step integration on ‘
which the procedure is based considers the rolling, the
yawing, and the lateral accelerations Corilputed from wind-
tunnel data as f’uncti.onsof the sideslip &gle. A sample
computatj.on table is presented to illustrate the appli-
cation of the procedures

A comparison is made of different methods i’orcaleu.
lating the disturbed ~ic)~~c)ns of’an airplane resulting
from an abrunt aileron movement. Experirnen.taldata, which.
were obtained from conventional.wind-tunne~ tests of a
model of a recent fighte”r airplane, are used in the com-
putations for comparing the vs.i~iousm,ethoclss

‘Theresulting solutions show that, for the case of
non.line.arderivatives, the calculated motions are in
better agreement with tineresults obtained from flight
tests if’the rollin~ and yawing accelerations computed
from static-model tests are considered as functions of
the sideslip angle. The lateral acceleration, wlnich is
often assumed to be negligible, should be considered.
The variation of,the rolling and yawing accelerations
resulting from aileron movement pro”oably should also be
considered when sufficient data are available, The
variation of the dynamic derivatives L N Lr, and N

p’ p$ r
should also be taken into account wlmn ~ufficient dynamic-
test data are available,

It is shown that the present step-by.step integration
method is reliable for cases in which only the first
quarter-cycle of the motion is required (for example, in
cases in which the maximum value of the sideslip angle is
desired for determining vertical-tail loads irlrolling
pull-ouks) ● For the range past tinefirst quarter-cycle
of the motion curve, the method requires further refinements

,mm ---,,.. - . .. ,. —-—-.. . . . .. .. . ... . ., . . . .
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such as those provided by the Runge-Kutta summation
method. The present step-by-step integration method may
be applied to the solution of motions produced by rudder
movements or by a combination of rudder and aileron
moverlent, as well as to the solution of motions produced
by ailerons alone.

INTRODUCTION

The j.ncreasing importance of predicting the flying
qualities and inaneuverabiltty of an airplane has empha-
sized tb.eneed for a more accurate method of computing
the lateral motion resulting from abrupt control movement.
Increased speed and maneuverability have, in addition,
made it necessary to predict the maximum sideslip angles
in lateral-control maneuvers in order that maximum
vertical-tail loads may be estimated.

Much work has been done on the subject of disturbed
m.otion.s(references 1 to 5), but all.the solutions deal
with constant lateral-stability derivatives, These
treatments assume that the rolling-mow.ent coefficient Ct

and the yawing-moment coefficient Cn are linear func-

tions of the sideslip angle g;ndh:n;::l:::t:eloc ~ty p*
and the yawing velocity r. , however,
indicate that most present-day airplanes do not possess
these Iincar variations of CL and Cn with ~, since

the degree of linearity is affected by such factors as
the geomatry of the airplaney tilepowers the type of PrO-
peller, and the blade angle.

Lack of mathe-rnaticalequations for expressing the
derivatives as functions of the motions makes the method
of references 2 and 4 inapplicable The procedure for
the solution with nonlinear characteristics presented
herein is a refinement and an expansion of the integration
procedure of reference 1.

With the wind-tunnel data available at the present ‘
time, only the linear and angular accelerations Py~9

of tinesideslip an@e p. Lack of model-test data for
effects of the rate of roll p and the rate of yaw r
still makes it necessary to deal with the dynamic deriva-
tives Lp* Lr , and Np determined from theoretical
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treatments (reference ~). !!%ed~ynam,icderivative Nr>
is d.eteiniin-e’d’-pa~tly from wind-tunnel da.t.a-.and-partly
frofiltheoretical considerations (references 6 and 7).

In the present report three previously established
procedures, based upon constant derivatives, for deter-
minin~ the disturbed motions of an airplane that result
from abrupt aileron movement are compared with a step-by-
step integration procedure that considers accelerations,
computed from wind-tunnel data, as functions of the side.
slip angle ~. This step-”oy-step inte~ration n:ptonly
EPneral-~-YProvides more accurate sclut~ons for disitin?bed
motions but also should prove useful in determining the
vertical-tail loads resu..ltingfrom rolling pull-out
maneuvers as discussed in reference 5.

TJnpublished experimental data (fig. 1) obtained from
conventional wind-tunnel tests of a imor.lel of a recent
fi@htcr airplane are used in calculating the motions. and
the results-are compared with flight results.

.

COEFFICIENTS AND SYMBOLS

The coefficients and symbols used herein are referred
to a system of axes in which the Z-axis is in the plane
of s;mmletryand perpendicula~’ to the relative air stream,
the :<-axis is in the plane of’symmetry and perpendicular
to the Z-axis, and the Y-axis is ,per.pe.ndicularto the
plane of’symmetry. The coefficients and symbols are
defined as follows:

Cn

()Liftairplane lift coefficient ——-
qs

lift coefficient of wing

increm-ent of lif”tcoefficient resulting from
f’lapdeflection

profile-drag coefficient of wing

in.erementof profile-drag coefficient caused
flap deflection

rolling-moment coefficient
(

Rolling moment
qSb )

(Yawingyawing-moment coefficient — moment
qsb )

n -Inmmm —.--.. ,,.,.-,,.,,,.-- —-. —.--..., ..

by
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rolling-moment coefficient caused by aileron
def~ection

yawi.ng-rnoment
deflection

lateral-force

coefficient caused by aileron

coefficient
(

Lateral force
qs )

wing span, feet

flap span, feet

taper ratio; r~~io of tip chord to root chord

aspect ratio

distance from center of gravity to rudder hinge
line, feet

aileron deflection, degrees; used with subscripts
L and R to refer to left and right ailerons,
respectively

flap deflection, degrees

rudder deflection, degrees

angle of attack of vertical tail, degrees

absolute angle of attack of wing measured from
zero-lift line, degrees

angle of yaw, degrees

sideslip angle? radians exce-pt as otherwise
indicated; considered in static wind-tunnel tests
to be equal to -$

rate of change of yawing-moment coefficient with

()

bCn
rudder deflection

b-

inverse of rudder effectiveness parameter at

())

db
constant %ift &

V!-1
“L
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Czp

c
‘r

‘P

Lr

Nr

b..

rate of’ change-of- rolling-moment .,coefficient

()?)Cz
with wing-tip helix an<+le —

&

rate of chance of yawing-nlom.en.tcoefficient with

()?!c~vvin.g-tip’hel,ixangle —
~~:

rate of change of l-oiling-mmmefitcoefficient

rbwith
~

rate of change of yawing--moment coefficient
..

‘vltyl%
rate of change of’;T~~t/i.g{j-nlorilent coefficient with

()t)Cn
angle of yaw

T
rate of change of rolling acceleration with rate

rate of change of rolling accelerat~.on with rate

of yaw

tz’g-)

rate of change o.fyawing

of roll

W%)

rate of change of yawing

acceleration with rate

acceleration with rate
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dp

z

dfi
m

dv—

rolling acceleration oaused by control deflection,

()
CT qsb

radians per second per second —
mkx2

~Subscripts a and r indicate aileron and
rudder, respectively. )

yawing acceleration caused by control deflection,

()
CnqSb

radians per second per second —
rkz2

(Subscripts a and r indicate aileron and
rudder, Gespecti.vely.)

rolling acceleration resulting from sideslip angle,

()qsb
radians per second per second Ct —

n@

yawing acceleration ’resultirqgfrom sidesl~p an81eJ

radians per second per second

()

~ qSb

n l&z2

sideslipping acceleration resulting from sideslip

()

qs
angle, feet per second per second Cy—

m
.

~o].lfn~ angular acceleration, radians per second
per second

yawing angular acceleration, radians per second
per second 1

sideslipping velocity, radians per second

sid.eslipping accelerations feet per second per
second

net induced roll.i~.~accelerations at t=n

net induced yawing accelerations at t = n

——.-,,, —,(——,, —,,—, ,-11 I-Ell-11 11- I I■ llI1-11 —ml mIII 11111I 11111I II ml m III
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P’

r

$

P

v

v

q

s

m

‘x

k,~

t

g

rolling velocity.,radians per second except as
otherwise indicated

yawing velocity, radians per second except as
otherw~.se indicated

angle of roll, radians except as otherwise
indicated

air density, slugs per cubic feet

velocity along X-axis, f’eetper second

sideslipping component of velocity, feet per
second

dynamic pressure, pounds per square foot 12
()
~ W

w-ing area, square ‘feet

mass of airplane, SIUgS

radius of gyration about X-axis, feet

radius of gyration about z-axis~ feet

time, seconds

gravitational acceleration (32.2 ft/sec2)

‘7

Ko, ~ffs~ly K2, K3 constants used in determining Nr

The subscripts n and n - 1 denote values corresponding
to the time t and to the immediately preceding time
t - At, respectively.

PROCEDURE FOR COMPUTING LATERAL MOTIONS

BY STEP-BY-STEP INTEGRATION
~.

All the procedures considered for determination of’3
disturbed motions are based upon the following well-known
dynamic lateral-motion equations.for level flight:

d~
‘=6L5+0,dt ‘% + rLr + FLP

(1)



(2)

dv
z

= g SM ,$-rV + pYp (3)

(4)

(5)

The individual terms in equations {1) and (2) rep-
resent the values of the instantaneous angular accelera-
tions produced by the rriagnitudeof the aerodynamic
moments acting on the airplane at any given instant of
time. The individual terms in.equation (5) similarly
represent the instantaneous lateral accelerations produced
by the gravitational and aerodynamic forces. The instan-
taneous accelerations are independent of the manner in
which tb.eaerodynamic moments an-dforces vary and.are
dependent only upon the inst:?.nte.neousmagnitudes of the
moments and forces acting at any Ziven time.

For the linear case, the acceleration terms such as
pNp and pNp m~y be expressed as products of an angular
displacement or velocity, as the case may be, and a con-
stant slope representing the acceleration caused by the
disturbance per unit disturbed motion. Equations (1)
to f~.)may therefore be directly integrated (reference 2).

For the nonlinear case, direct integration is seldom
-possible. ~~~hendirect integration is not possible, the
accelerations, such as @hTp,$Yp, and bLb, determined
from model experimental data, may be ,plotted as functions
of p; such a p].otpermits a solution for the nonlinear
case of distur”~ed motions by the use of step-by-step
integration or, when available, a differential analyzer.
No variatj.on of 61Ja and 61?5 witil ~ was considered

for tke airplane in the present report since no such
e.xperiv.entaldata were available.

The appendix presents the data, the references,
the calculations, and the information for curves such
as figure 2 necessary for the formal step-by-step
integration.. (Me expression for Nr, as given in



the appendix and used In conjunction with the r.ethod of
the ‘pres-entreport-idiffers slightly from the expression
given in reference 6 in that the first term of the equa-
tion for the determination of %lr in reference 6

(114.6; Cn -c
‘Vtatl on )

%tal ~ off

which represents the damping of the vertical tail and is
suitable for propeller-off conditions, has been replaced
herein by the expression

Analysis indicated tb.atthe rotaticn of the propeller
slipstream and sfdewask in model tests precluded a reliable

dcn
determination of the verti.c!~.l-taileffectiveness

&
when tb.eey.pression of reference 6 was used. ‘Tineexpres-
sion g~ve:nin the present report is more general and is
suitable for any power and propeller arrangement,

The values of Kf , ‘<2‘ and
‘3

have not been

solved for in the appendix since they are used for flaps-
deflected conditions and the airplane used in the present
report was in the cruising configuration. After the
calculations indicated in the appendix,have been made and
after curves such as fig~re 2 have been plotted, the
ste,p-by-step integration form shown as table I lllaybe
used. In using the step-by-step integration, it may be
desirable to use time increments of 1/10 second for con~-
putational convenience as well as for brevity of the
solution combined with a fairly good degree of accuracy.

The integration indicated in table I is based upon
the summation process of solution of equations (1) to (5).
This summation process’, as used in table I, may beb
expressed as

dp
% = ()z n-~ At + pn-l (6)
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Pn”+ Pn.1
$n = ‘2— At + @n-l

dr
rn = ()E

ht + m-l
n-1

d@
()Pn = ~ ~-1 ‘t + ~n-1

where

()
dp

= 6L6 + Pn-lLp + rn.lLr +
()~LP n-~z ~-~

()
dr
z

= ~fiTb+ pn-lNp + rn-lNr +
n-1

()‘*P *-1

NACA AIM NO. L5E02

(7)

(8)

(91

(10)

(11)

(12)

The subscripts n and n - 1 denote values corresponding
to the time t and to the immediately preceding time
t - At, respectively.

The first step in using the step-by-step integration
involves the insertion of values for the constant accelera-
tions and derivatives 5L5’ 5N5, Lo, Lrs ITp, and ITr

in columns (5), (11), (20?$ (21), (2~), and (25) in the
underlined spaces provided in the headings of table I.
The values in radian measure of the initial rate of roll p,
the angle of bank @, the rate of yaw r, and the angle
of sidesli-p p should be inserted in columns (5), (8),
(13), and (18) for t = O. F’romcurves such as figure 2,
the values of Wp, (3LP, and ~NP should be determined

for the value of F at t = O (P = O in the resent case).
iThese values should be inserted in columns (1 ), (19),

and (23) for t = O.
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thlmmfl (9),(10), “(-1~), [16.), (20).tQ (22).,.an~ (.24)
to (26) may now be ZIIIQCIin for t = O. column (22) pro-
vides the induced rolling acceleratims; column (26) pro-
vides the induced ya.w:ingaccelerations. The net instan-
taneous rolling and yawing accelerations may now be
determined for t = O by performing the computations
indicated,in columns (3) and (11).

By repeating the procedure j.ndicated in the headings
of table I and by using the sample values obtained for
t = O, the values of PJ $$ r, and @ are obtained
for t = 0,1 second. After the value of ~ for
t = 0.1 second has been obtained, Corresponding values
of (3YP, PLP, and 13NP are determined and inserted in

columns (14,), (19), and (25) for t = 0.1 second. The
‘netinduced accelerations Z% and ZNn for t = 0.1 second
~~:u;gw be determined {columns (22) and (26)) anti,as a“

the values in columns (3) and (11) may be deter-
mined ;or t = 0.1 second. The remainder of table I for
the other values of t may now be solved by repeating
the procedure indicated in the headings and by using curves
similar to figure 2.

The angle of ban!< @ was determined by averaging
the rate of roll p (columns ~~~ ~o (7)). TkiiS averaging
was not followed tlir~ugh for ‘ and for r in the
determination of P, because it was thought desir~ble
to maintain simplicity in the table and the errors intro-
duced by a disre~ard of’these averages are small and
are within the accuracy of tkLe data used for the calcula-
tions in the appendix.

The step-by-step inte~ration presented herein is
not limited to the solution of motions produced by ailerons.
Such integration may just as readily be applied to the
solution of disturbed motions produced by rudder movements
or by a combination of rudder and aileron movement. For
the case of lateral disturbances caused bv rudder alone.

When the step-by-step integration is applied with
var~able derivatives to fli~t conditions involving accel-
erations greater than lg, the value of the airplane speed
used should be the true airspeed V. The acceleration,
however, must be considered in determining the airplane
lift c~efficient. The values of Cna and Cza

(if an aileron movement is concerned.) and the derivatives
correspond to the new lift coefficient.



1 ,,8,. ■m,, ,, 8 ,8 ,8 ,8.8 .,. 8.. . s. s-- 9 s , . ., .. . ...... .. . ... .. -————

C (YilpARTSOlt OF FROCEIXUKM FOR

12 NAcA ARR IJO.L5E02

G@MPUTING

The characteristic curves obtained by tinestep-b~~-
step integration are compared in fi~ua~es 3 to 6 with the
res-cd.tisobtained fr~i~actual flight tests; with tb.e
method of differential operators (re.f’erence2 ), which
is an exact solution dealin~ with constant slopes; and
with an approximate analytical solution in which constant
s.lo~esare also USed (reference 1~.)and which is applicable
on.1~to the ~.ol.utionof the sideslip angle. ‘Jlhonthe
ma~in~~- s~.dl~slf.~~ an~l~ was co~ol..l.~ed by t-hf? a.pp~OXimate

met’hod of reference ~, the computed value was Ofoumd tO

be 5’~.~0,which does not compare with the l@ determined
4

from flight tests. ~::h,enthe value of Cn was considered

equal to Cr + C -~~, the compu.ted val.ueof the ,maximum
‘a ‘P< “;

sideslip angle was determined to be };~.2°, which is still
rather b.igh. The prcsen.t procedure provides the mos~
accurate correlate.o,nwith flight test results for all the
moti.@ilsconsidered.

It should be noted that the refinement used in the
present report for v;>ed.eterr,ination of’ i\Trwas not used
in the ap;?lication of’the methods of references 2 and ~.
It shoLI.ldalso be noted that v/J?, which is considered
equal to the value of ~ in rad”lan.sin all th~eprocedures,
is 5-11its strictest sense equal tO tan ~. The assumption

that P=; leads to ~.uch larger error’sfor large ValUf3S

than for small values of ~. For example, consideration
of these two sources of error reduces t’hemaximum side-
slip angle of ‘32°, shown for the approximate procedure of
reference )-~.,to a value of 560. ml~ improved method in
conside~ing )Tr accounted for 9°, wh.cress the other 27°
were accounted for ?]y the fact tlaat v/v was considered
equal to tan p. In the case of’the step-by-step pro-
cedure o.fthe present report, the maximum sIG.~-.o‘,-~~lf.pangle
Wol.lld]lavebean equal to about 25° if Nr had been deter-

mined by the meth-od of reference 6. If V/~~ had been_
consj-dered equal to tan (?, the maximum si.deslipan~le
by the step-by-step method would have been reduced.

abo’rbi“”
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..— .. Hor soiutions involving tho assumption of linear
slopes, the slopes used ik the pr4#ent problem were arbi-
trarily measured through ~ = OO. If the more usual
practice of selecting the averaSe slopes ovor a wider
range of yaw angles had been employed, the calculated
results would have approached more closely the results
of the variable-slope method. For cases in which vertic~
tail loads in high-speed dives ar~ of primary concern,
however, s-mallangles of sideslip may be critical, and
consideration of average slopes over a wfde rang~ of yavr
angles may be unwise. It appears therefore that, althoug$
the previous procedures may be reasonably reliable in a
num%or of instances in which the characteristic CIS Cn>
and ~y curves possess approximately linear rclation-
shfps, nonlinear characteristics .occ~~rwith sufficient
freqncncy to make the general.use of the non.linear step-
by-step procedure desirable.

In order to determine the i-mportance of’the lateral-
acceleration term ~y6~ the present procedure was
repeated with @l?F= 0. Although the resulting curves
indicate that the Influence of ~~p for the subject

airplai-~ewas not ver-y large , the effsct of pYp may be
more significant for other types of airplane and there-
fore sh.ou].dnot be neglected.

A conrparison of the step-by-step solution using
constant slopes with the method of differential operators
(refer~ilce2 ) indicated that values obtained by the step-
by-step soluti,ontended to deviate a little more from
flight test results than the values obtained by the opera-
tional method. The step-b:r-step solution, for this
particular comparison, apparently gives a sid.eslipangle
approximately 20 larger tb.anthe operational procedure of
referen-ce 2. The tendency of the step-by-step solution
in the linear case to deviate a little more from flight
tests than a direct integration procedure may reasonably
be presumed to persist in the application of the step-by-

10
Step solution to the nonlinear case, as in the present
report.I Further refinement of’the step-by-step procedure

I may therefore be expected to provide correspondingly
closer agreement with flight. The Runge-Kutta summation
method (references 8 and 9) provides such refinements of
procedures. The step-by-step procedure as outlined in
the present report, however, is believed to provide
sufficient engineering accuracy Idwu no more tti~ntl:le
fi::st q.u.=.rter-cycl.e04P-’-~.>-IJ..:.b mo :;:io.rli,s~~e(y~~-~d,
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Although 6L6 and 6N~ were considered constants
in the precedinq example, further analysis indicated that
the i-oiling and yawii~g accelerations resulting from
aileron deflection should also be considered functions
of “ for a greater degree of accuracy. It is quite
poss$ble that

“P’ lVP’‘r’
and Nr are not constant as

ordimrily assumed and as assuITledin the present re~ort.
If these parameters are not constant, some of the dis-
crepancy that still exists between flight test results
and the present method would.be explained. Until experi-
mental. data from dynamic-model tests are available, how-
ever, these values must be presumed constant for lack of
more co-repleteinformation. Ctner possible sowrces of
discrepancy between calculations and flight results are
the assumptions of level f’li@t, constant normal accel-
eration constant speed, and instantaneous control
deflection. pol*practical purposes, however, it was not
believed necessary to take these factors into account.

A procedure based upon step-by-step integration is
presented for determining the disturbed motions of an
air:~ls.neresulting from the deflect~.or.o.fthe lateral or
directional controls for the case of nonlinear derivatives.
A comparison of the step-by-step procedure with otlner
methods indicated the foliowins conclusions:

1. The calculated disturbed motions of a.nairplane
resulting from abrupt control movement will be iilbetter
agreement ~~ith the results obtained from flight tests if
the variation of the experimentally’ detezwined rollin~,
yawings and sideslipping accelerations ~Lp) pNp, and

Pyp with the angle of sidesli.p p is considered. The

sidesJLipping accelei”atioi~ pY~, wb.ich is often ass<umed

negligible , should be cor.sidered. The variation of the
rolling an-dyawing accelerations 5aL~a and 5aN~a

resultinG from aileron moveinent probably should also be
considered when sufficient data are available. The
variation of the dynamic derivatives LP~ NPS Lr>
and ?~

-r
sh.ould also be t~ken into account when sufficient

dynamic-test data are available.
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2. The value of the maximum sideslip angle for use
Sn the determination of the vertical-tail loads in rolling
pu~l.out ~~neuve~~ should,‘beobtained by using the step-
by-step integration method.

~. The step-by-step inte~;rationmay be applied to
the solution of motions produced by rudder movements or
by a com.bi,.nationrudder and aileron movement, as well as
to the solution of motions pro!duced “byailerons alone
when c>nly the first qutarter-cycle of the motion is desired.

Langley Merncrial.Aero:nautiicalLaboratory
National. Advisory Conmittee for Aeronautics

Langley Field, Va.
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APPEh~IX

DETERMINATE ON OF DYNAM1 C LATEI?ALMOTIONS OF A FIGHT’ER

ATRpL.Q!E ~~ TO ABRUPT AILERON MOVEMENT’

nata required. - For the fighter airplane used in=— .
the illustration, t~ledata required for the determination

of dynamic lateral motions resulting from abrupt aileron
mo17efi.ent are as

b, ft....,

bf, percent b .

h. . . . .

A, .,...

L, ft...

DaL, de(g .

5a~, deg .
lL

6~, deg . .

aa, Eeg . .

c%’”””
ACL . . .

f

.0

. .

● .

. .

. .

. .

. .

● .

● *

follows:

,.

.,

● ☛

✎ ✎

✎ ✎

✎ ✎

● ✎

● ✎

✎☛

● ✎

✎ ✎

,.

● ✎

✌✎

✎ ✎

✎✌

✎ ✎

✎ ✎

● ☛

● ☛

✎✌

● ☛

~2.83

● 66

0.50

● 5“5

12.75

. -17

.* o

1.1’2

,* c)

cd,,,, ● * ● ● ●

.&.cd’J. . . .r,f
eta, . . . .

Cna ● ● ● ● ●

~raCna-. ~ ● “ “

V,;ps . . . .

q, lb/sq ft .

r,, slugs . . .

c.U9 Sqf’t. .o

kX2 , Sq ft..

ky;~, Sqf’t. .

,.* 0.01

.*** o

. . . 0.04

. .-0.0065

. 0,001474.

.0 1142● 2

● * 24.09

.*. 358

● . . 334

.* 53.52

. . . 57*9

Landing gear . , 0 0 . Retracted

The VD.lUSof b= ~ -2.0 is determined from reference 10.
‘av

Procedure. - From.reference 3, determine—— —

Ctp = -o.~25

cnn = -0.0655
:

%r = 0.308
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Then, from refereilc.e6,,.,de$err..ine

From reference

.,

II.= -0.33 SA

= -0.27,@

7, determine

~1 = -0.020,2

Compute the following:

Lp = b qSb
Clp ~—.-

mkXd

= -1.334

= -0.161 = -0.108

= 1“33

Nr =
[

-114.6&br %av + ~ocd + ~~ Acd
Ow of’

= -0.5108



3.8 NACA ARR ~tOs L5E02

mp
qs

‘ Cyy

The Va~UeS of %* ‘%?? and Kj have not been solved

for since they are tised for flaps-deflected conditions
and the airplane used in the present report vJas in the
cruising For flaps-deflected conditions,configuration.
Kf may be determined f’rom the following formula from

reference 6:
bt

()

bf 3~1 ‘3%(1 - k)
Kf = @,33 --j-j- -—

2+2h -

The values of K,2Jand K
3

n-my be determined from
reference 7,

Although tho ValU~f3 of Cn and cl in the present
P r

report have been -determined solely fro~.nthe curves of
rcfurunc~ 3, it may be desirable in some cases to include
the effects of the vertical tail by use of the method of
refcrcncc 11.
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NACA ARR No. L5E02 Fig. 1
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figure 1.- Yar/u+ion of fhe a!irecf/ona/ und /&era/ coeffickds
Cl, Cn, and Cy with angle of yaw v determined fmn
te~ts- of u & ‘Jcc?lemodel of u frgh+er a/rp/une in +he
Lm@y 7-by/O-M +ume/. Cruishg confJwriit/on;~=l#2; &=$&o~

I mm -.



NACA ARR No. L5E02 Fig. 2

o

-i

-4

-6

-8

NAmow WIWIY
COMMITTEEFORAEEONAUTC9

Figure 2. – Curves of the occeleraf/ot7s $+j, @((,
ad @~ as func +1’wu of the Meshp ang/e @.
determined from feats of a & -6ca/e modei of u ‘
fighter uikpb~ In f%e LQ9ky 7%y/O-fmf tu~ne[ &r=@’& =O.O



77i7h9, t, sec

figure 3 Comparison of tvdeshp curve5 for a fighter ~lkplane obfiwhea’ & several
af~ferent methods of ca/cu/a+iofi and by fllgh+ +e~+s.Airplane h’ crulbing
configurufion; c~=l.42.
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figure 4.- Comparison of rolhng-vehcity curves fir
several different me+ho& of cdculu+ion ufzf by

com?gwcv?on; CL= /.42.
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figure 5.- Compcmion of

differen+ me fhods of
figuration; CL=/,4i?.
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cmg~e-of-bank curved for a fighter ulkplane obtained by aevetd
colcuh%m cmd by flight tests. Atrp’dne in cruhing con-
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figure 6.- Comparison of yuwhg-ve/oci~ curved for a fighter airplane ob+ainea’by

several differenf meihod.. of calcuhtion and by flight teJ& Airp/ane in cruising

configuration; CL=L 42.
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